Max. Marks: 80

III Semester M.Sc. Degree Examination, December 2014 (NS) MATHEMATICS M – 304 : Fluid Mechanics

Time : 3 Hours

Instructions: 1) Answer any five questions choosing atleast one from each Part.

2) All questions carry equal marks.

PART – A

1. a) With usual notations, derive the Helmholtz vorticity equation in the form

$\frac{D}{Dt}\left(\frac{\overline{\omega}}{\rho}\right) = \left(\frac{\overline{\omega}}{\rho} \cdot \nabla\right) \overline{q} \cdot Hence dedu$	ice that $\frac{\overline{\omega}}{\rho}$ = constant for two-dimensional	
flows.		8

- b) State and prove Kelvin's minimum energy theorem.
- 2. a) Discuss the flow for which the complex potential is given by $w = f(z) = \frac{\mu}{z}$. 8
 - b) Obtain the complex potential for a uniform flow that is incident at an angle ' α ' to the x-axis. 8
- 3. a) State and prove Milne-Thomson circle theorem.
 - b) Find the potential and stream functions for a uniform flow of a Newtonian, incompressible liquid in the presence of a stationary cylinder of radius 'a'.

PART – B

4. a) Derive the energy equation for an incompressible viscous fluid in the form

 $(\rho C_v) \frac{DT}{Dt} = K \nabla^2 T + \bar{\Phi} + Q$ where the quantities have their usual meaning. **11**

b) Obtain velocity distribution for plane Poiseuille flow.

5

8

11

PG - 145

8

5.	a)	Explain briefly Stokes' first and second problems.	4
	b)	Obtain the velocity distribution for steady flow of an incompressible viscous fluid between two concentric rotating cylinders.	12
6.	a)	Explain the concept of boundary layer. Derive Von Karman's integral equation in its usual form.	10
	b)	Write a short note on :	6
		i) Prandtl number	

- ii) Reynolds number
- iii) Dimensional analysis.

$\mathsf{PART}-\mathsf{C}$

7.	a)	Define Mach number and using the same discuss the classification of flows into subsonic, transonic, supersonic, sonic and hypersonic flows.	8
	b)	Derive the equation of conservation of mass for a viscous, compressible fluid.	8
8.	a)	Explain the following in brief	
		i) Reynolds stress	
		ii) Homogeneous turbulence	
		iii) Isotropic turbulence.	8

b) Starting from the Navier – Stokes equation for an incompressible viscous fluid in the absence of body forces, derive the equation of motion for a turbulent flow. Use the gradient-diffusion model for closure.